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Figure 1: Left: vector texture synthesis from raster input. Right: post-processing operations facilitated by our vector representation.

Abstract

We propose a new method for synthesizing an arbitrarily sized novel vector texture given a single raster exemplar. In an analysis
phase, our method first segments the exemplar to extract primary textons, secondary textons, and a palette of background colors.
Then, it clusters the primary textons into categories based on visual similarity, and computes a descriptor to capture each
texton’s neighborhood and inter-category relationships. In the synthesis phase, our method first constructs a gradient field with
a set of control points containing colors from the background palette. Next, it places primary textons based on the descriptors,
in order to replicate a similar texton context as in the exemplar. The method also places secondary textons to complement the
background detail. We compare our method to previous work with a wide range of perceptual-based metrics, and show that we
are able to synthesize textures directly in vector format with quality similar to methods based on raster image synthesis.

CCS Concepts
» Computing methodologies — Texturing;

1. Introduction

Texture synthesis is a long-studied problem, with raster images
receiving a great deal of attention. Vector textures, however, are
much less explored. One advantage of vector textures is editabil-
ity [OBW*08]: numerous existing operations can be used to ma-
nipulate [LTH86] and remove elements from a vector texture. Such
operations are much more difficult to apply to raster images. Fig-
ure 1 shows two examples of synthesized vector textures along with
anumber of editing operations that are easily applied to textons, but
much harder to apply to a raster image.
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Previous work has introduced methods for synthesizing simple
polygon distributions through polygon packing [SKA21,XWL*23]
or synthesis of vector patterns from exemplars [TWZ22, TWY *20,
HLT*09, AKA13]. However, these methods either take simple
polygons as input or require the input to be already in vector for-
mat with separated vector elements. Other work explores generat-
ing vector content that matches a given raster image, but does not
permit extrapolating a given exemplar image into a larger texture of
a more stochastic nature [LLGRK20]. One might imagine generat-
ing vector textures from raster input by first transforming the raster
input into vector format with existing tools [SLWS07, LLGRK20],
then applying the methods discussed above to generate a new vec-
tor texture from the input. However, vectorization tools often create
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output with many overlapping polygons exploiting transparency to
recreate the input, rather than flatter output that is easier to edit.

We propose a novel algorithm for synthesizing vector textures
from a given exemplar in raster format. Our method is aimed at tex-
tures composed of distinct, irregular textons with uneven spacing
and lacking global structure, e.g., rust and heterogeneous materials
(Figure 1). We assume that the textured surfaces are flat, without
prominent shadows or self-occlusions. From this input, we gener-
ate textures composed of solid-colored polygons on a background
gradient field.

To synthesize a texture from an input raster exemplar, we build a
texton hierarchy through segmentation and extract a background
gradient field on which the textons reside. The texton hierarchy
can be used to synthesize a novel vector texture of any size.
We synthesize a background gradient over a target output do-
main, and then place textons over the background to replicate
a similar texton context as in the exemplar. Our code can be
downloaded at https://github.com/ChrisPGraphics/
ByExampleSynthesisOfVectorTextures

Our vector textures closely resemble the input exemplars. Our
method is competitive with methods that operate directly on the
raster domain. Beyond synthesizing textures, we show how a pure
vector result facilitates editing operations that are difficult to ac-
complish with raster images. Such operations include texture in-
terpolation where the textons of one result (represented as solid-
colored polygons) can move and warp into the textons of another.
This is in contrast to naive image interpolation by cross-fading be-
tween two images. The supplemental material includes a video of a
temporal interpolation; a spatial interpolation is shown in Figure 1.

In summary, this paper makes the following contributions:

e We describe a method to convert a natural raster image to a vec-
tor representation containing discrete textons and a background
gradient.

e We propose a method to synthesize novel vector textures given
our vector representation.

e We demonstrate proof-of-concept editing operations made pos-
sible by our discrete texton representation.

2. Related Work

Our method converts a natural image to pure vector format and
then synthesizes a novel vector texture from it without user guid-
ance. To our knowledge, no other methods directly synthesize a
vector texture from a natural raster image. While our work consid-
ers natural textures— i.e., irregular textures with few or no repeated
elements—existing work on vector texture synthesis applies to line
drawings and textures that are already in vector format, often with
distributions of identical elements.

Vector Texture Based Methods. Jagnow et al. [JDR04] propose
a parametric method to generate a limited range of solid textures.
Barla et al. [BBT*06] describe an algorithm that produces a vector
texture, but requires the exemplar to be a distribution of vector ele-
ments. Their method also requires the user to perform manual inter-
active parameter tuning. Following this, Passos et al. [AdPWS10],

Landes et al. [LGH13], and Ma et al. [MWLT13] propose fully-
automated algorithms with the same objective.

Both Tu et al. [TWZ22,TWY *20] and Hurtut et al. [HLT*09] use
polygons to produce novel textures, assuming the example texture
is already comprised of polygons (for example, as an SVG file).
The approach taken by these methods is based on clustering. Tu et
al. group visually similar textons, whereas Hurtut et al. build clus-
ters of samples for each vector element using local neighborhoods.
Both methods attempt to identify the underlying local distribution
of clusters and use this to synthesize novel textures which are visu-
ally similar. AlMeraj et al. [AKA13] propose an equivalent to the
raster patch-based texture synthesis for vector images, also assum-
ing input primitives are provided in vector form.

Saputra et al. [SKA21] and Xue et al. [XWL*23] describe vector
texture synthesis as a polygon packing problem. These methods try
to arrange a set of polygons in a finite area while avoiding overlap
and reducing empty space. These methods were designed for sim-
ple polygon distributions, and may not perform well on a vectorized
natural image. Closer to our problem domain, Qian et al. [QSS*22]
generate a vector texture from a raster image, but are limited to
exemplars with simple patterns consisting of only a few colors.

Non-parametric Methods. Efros and Leung [EL99] propose a
non-parametric sampling approach where pixels are copied from
the exemplar directly. Later, Efros and Freeman [EFO1] proposed
Image Quilting, copying entire patches instead of individual pixels.
Such approaches have extremely high quality outputs, but some-
times exhibit visible repetition. Our approach can be considered
non-parametric owing to our texton reuse. We provide a quantita-
tive comparison to Image Quilting.

Like our work, Galerne et al. [GGMI11] and Heitz and
Neyret [HN18] propose effective algorithms for synthesizing a nar-
row range of textures. Galerne et al.’s random-phase approach is
designed for microtextures; Heitz and Neyret’s Gaussianization
method covers a similar class of textures, although the texture types
for which their method is successful are not clearly characterized.

Other methods that work purely in the raster domain include
Praun et al. [PFHOO], Dischler et al. [DMLGO02], and Dischler et
al. [DZ06]. These methods require manual segmentation to be per-
formed by the user before synthesis can begin. Liu et al. [LWX™*(09]
and Guehl et al. [GAD™*20] require the user to provide a manually
created binary mask. Gilet et al. [GDG12] use an intermediate vec-
tor representation, which is interpolated to produce a raster result.
Their method requires interactive refinement from the user to get
the desired results and so it is not fully automatic.

Neural Network Based Methods. The literature on using neu-
ral networks for texture synthesis is extensive. Influential works
such as Gatys et al. [GEB15], Zhou et al. [ZZB*18], and Jetchev
et al. [JBV17] show how networks are able to create high resolu-
tion textures from a single smaller exemplar. Subsequent papers en-
hanced the ability of neural network-based synthesis through novel
loss functions and architectures.

Bergmann et al. [BJV17] propose a Periodic Spatial GAN (PS-
GAN), improving on previous GAN-based texture synthesis ap-
proaches by using only convolutional layers in their network; their
method can produce periodic textures, with higher quality than
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previous GAN-based approaches. We compare with this method
as representative of the state of the art of GAN-based methods.
Shocher et al. [SBII19] and Shaham et al. [SDM19] train a GAN
on small patches of a single exemplar; these methods can generate
arbitrary-size and potentially nonstationary output.

Zhou et al. [ZCXH23] propose a new loss function that combines
Markov Random Fields with neural networks, the Guided Corre-
spondence Loss (GCD Loss). Their approach is capable of synthe-
sizing high-quality textures of arbitrary size. We use this method as
a comparator due to its general effectiveness.

Optimizer Based Methods. Kwatra et al. [KEBKOS5] propose a
method for synthesizing multi-scale textures through optimization,
introducing an energy function based on the Markov Random Field
and an optimization technique based on Expectation Maximiza-
tion [MKO8]. Kaspar et al. [KNL*15] present an example-based
method capable of synthesizing high-quality textures, even those
with nonstationary elements due to large-scale structures. We con-
sider Kaspar et al.’s method to be the most effective optimization-
based approach and include it as a basis for comparison.

Summary of Methods. Table 1 compares our method to similar
algorithms. Ours is the only one capable of producing a pure vector
result from a photorealistic raster exemplar. We also require no user
guidance apart from selecting the exemplar. The other algorithms
that produce vector results either require an exemplar that is already
in vector format, have many parameters that need to be manually
tuned, or can only take a simple raster exemplar.

3. Vector Texture Synthesis

We take a single stationary texture as input and produce vector out-
put. This is done in two stages: an offline analysis, followed by an
online synthesis step.

In the analysis, we decompose the input texture into three lay-
ers: a set of primary textons, which are large distinct elements; sec-
ondary textons, which are smaller and less visually distinct than the
primary textons; and the remaining background region, comprising
all pixels not part of a primary or secondary texton. Then, we create
a descriptor for each primary texton, consisting of a local map of
the other primary textons nearby. We estimate inter-element spac-
ing for the secondary textons, and we sample the background to
obtain an approximation of its color distribution.

The analysis and layering process is similar to the approach of
Palazzolo et al. [PvM25] for creating abstract expressionist art from
arbitrary exemplars. Besides the novel problem domain, the major
difference is in texton extraction. Palazzolo et al. naively segment
the exemplar by color, whereas we extract meaningful objects, even
if the objects contain a high amount of color variation. Beyond syn-
thesis, we explore editing, adaptive density, and interpolation.

Once the analysis phase is complete, the online synthesis step
begins. Our method uses the descriptors and a scoring system for
synthesizing the primary texton distribution, and uses Poisson disk
distributions [DW85] for both the secondary elements and control
points for the background gradient field.

The overall pipeline is illustrated in Figure 2. The analysis and

synthesis are described in detail in the following subsections.
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Figure 2: An overview of our texture synthesis algorithm.

3.1. Analysis Phase

The analysis phase has three main subcomponents: first, identifying
major textons in the input; second, creating descriptors that charac-
terize the local spatial arrangements of textons; and third, estimat-
ing secondary texton density and background color gradient. We
discuss these three components in turn.

3.1.1. Primary Texton Extraction

We start by identifying primary textons. Our results are only as
good as the extracted textons, so the extraction algorithm is critical.
A good texton encompasses a texture element that is perceived as a
unit and is distinct from the background (e.g., a rock or a leaf), even
if it contains a high amount of color variation. Segment Anything
(SAM) [KMR*23], executed with a dense grid of query points (10k
points on a 500x500 image), provides suitable segments.

The resulting segments are processed to isolate individual con-
nected components and to remove duplicate textons. Primary tex-
tons are subsegmented using Felzenszwalb segmentation [FH04] to
obtain detail textons (scale parameter 10 used for our results). De-
tail textons are children of their primary texton. When a primary
texton is placed in the result, all of its detail textons are placed on
top in the location where they were extracted.

3.1.2. Secondary Texton Extraction

Once the primary textons are identified, we proceed to secondary
textons. We extract secondary textons using floodfill segmentation,
only checking pixels that are not within a primary texton.

We then estimate the typical spacing, §, between secondary tex-
tons by computing a Delaunay triangulation of the texton cen-
tres, then taking a predetermined percentile of the resulting edge
lengths. We opted to set 5 to the 40th percentile length; empirically,
the edge lengths are fairly stable over roughly the 30th to 60th per-
centiles, and a slightly lower estimate yields greater texton density
in the synthesis and hence greater perceived detail in the output.
The value of § will be used in the synthesis stage.

3.1.3. Primary Texton Descriptors

The primary textons are clustered based on visual appearance. We
take the RGB color channels of the median color from any pixel
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Paper Exemplar Input Vector Output  User Guidance
Ours Photorealistic Raster  Yes Automatic
Dischler et al. [DMLGO02] Photorealistic Raster No Manual segmentation
Jagnow et al. [JDRO4] No Exemplar Yes NURBS sphere
Dischler et al. [DZ06] Photorealistic Raster No Color quantization
Liu et al. [LWX*09] Photorealistic Raster No Mask of a texton + background marker
Praun et al. [PFHO0O] Photorealistic Raster No Outlined region
Qian et al. [QSS*22] Simple Raster Yes Automatic
Gilet et al. [GDG12] Photorealistic Raster No Interactive refinement
Guehl et al. [GAD*20] Photorealistic Raster No Binary map of textons and categories
Passos et al. [AdPWS10] Vector Elements Yes Automatic
Landes et al. [LGH13] Vector Elements Yes Automatic
Ma et al. [MWLT13] Vector Elements Yes Automatic
Barla et al. [BBT*06] Vector Elements Yes Interactive parameter tuning

Table 1: A comparison of our algorithm versus several similar methods. Ours is the only fully automatic algorithm that produces a pure

vector output from a photorealistic raster exemplar.

contained within the texton, in addition to the texton area and
Polsby-Popper compactness [PP91]. These five numbers are used
in K-means clustering to create some number of clusters (we typi-
cally use 15). The three color features are weighted twice as heavily
as the others. In stochastic textures, results are not sensitive to the
exact number of clusters.

Our texton descriptor is a 2d grid-based map of the surroundings
of a given texton, which we call the central texton. Each cell of
the map contains either a label for the category of the texton found
there, if any, or a code for “empty”. In addition, where there are
textons that lie partially within the map and protrude beyond the
initial boundaries, the map is extended to include these textons in
full. Figure 3 shows visualizations of some sample descriptors.

By default, we compute descriptors at the pixel resolution of the
original raster input. However, we believe that smaller resolution
would also work well, especially for future work in which more
elaborate texton synthesis would be used, not necessarily matching
the high-resolution texton shapes closely.

Descriptors must be fully within the bounds of the image; de-
scriptors extending outside the image are discarded. Thus, a de-
scriptor’s centre cannot be close to the image boundary, although
the descriptor can include elements up to the edge of the image.
We use a descriptor size such that each central texton has on aver-
age 2.25 textons in any direction. In order to have adequate variety
of content, the method thus requires large exemplars.

3.1.4. Background Gradient Field Summarization

We next proceed to characterizing the background. We remove
from the starting image all pixels marked as part of any texton, plus
an additional strip of pixels around each texton, ensuring that all
remaining pixels strictly belong to the background. We then con-
struct a Voronoi diagram of a Poisson disk distribution of points.
We found that a spacing of 25 produces good results. For each
Voronoi region, we compute the median color of background pix-
els. The set of median colors is called the background color palette
and will be used to synthesize an output gradient field.
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Figure 3: lllustration of descriptors extracted from a texture. The
gray box shows the extent of the descriptor. The red polygon is the
central texton; additional polygons are other textons in the descrip-
tor, colored by category. Notice that several textons protrude from
the initial descriptor region.

3.2. Synthesis Phase

To create a novel texture, we synthesize a distribution of primary
and secondary textons along with a background gradient field. We
then merge the resulting three layers into a single vector image.
Details about each layer appear in the following subsections.

3.2.1. Primary Texton Synthesis

We aim to synthesize a spatial distribution of primary textons sim-
ilar to that in the exemplar. Akin to non-parametric sampling, we
attempt to match the surroundings of output textons with arrange-
ments seen in the exemplar.

We track the desired output distribution through an
incrementally-developed target map, represented as a grid G.
Initially all cells are coded “undefined”. Whenever we place a
texton, we replace nearby undefined grid cells with target values
copied from the descriptor; values can be “empty” or can encode a
request for the cell to be covered by a texton of a given category.

The first texton is placed at random. Subsequent placements are
made by trialing a fixed number of additional textons (we use 20)
and scoring each candidate, with the highest-scoring texton being
selected. After finding the best texton, we make an attempt to im-
prove its location, repeatedly shifting it +/— one grid cell in x and
y and keeping the highest-scoring location. We use a maximum of
five steps. This texton’s descriptor is then written onto the map;
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Figure 4: Example iterations during synthesis. Black regions are
placed textons, and blue regions are requested textons. In each it-
eration, we evaluate how several candidate textons fit in a space
and keep the best one, adding its descriptor to the map. If the best
score is below 0, placement is not performed.
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Figure 4 illustrates the process. The full process is summarized in
Algorithm 1 and Algorithm 2, which respectively describe the pro-
cess for arranging the primary textons and the subprocess of adding
a texton to the map.

Scoring is decided as follows. Call a candidate texton C; it will
overlap with a region R of the same category, say o. The score
for C is a weighted average Zfzs w;A; of areas A;. The areas A; are
computed by counting pixels p with different properties, as follows:

1. Target Area (A;): ||[{p € CNR}||, i.e., overlap between texton
and target region.

2. Uncovered Area (4;): ||[{p € R—C}
left uncovered.

3. Empty Area (A3): ||{p € C such that G[p] = empty}||, i.e., texton
covers an area that is supposed to be empty.

4. Mismatched Area (A4): ||{p € C suchthat G[p]! =
{empty,a}}||, i.e., texton overlaps an area where a differ-
ent category is desired.

5. Same Overlap Area (As) ||{p € C— R such that G[p] = a}|, i.e.,
texton overlaps a different region of the same category.

, i.e., area of target region

By default, the weights w are (0.5,—0.4,—0.2,—0.5,—0.5), de-
termined empirically. Note that a negative weight implies that the
corresponding quantity should be minimized.

3.2.2. Secondary Texton Synthesis

Although fine-scale detail is needed for a convincing texture, such
details are individually of lower salience than the larger, higher-
contrast primary textons; consequently, such detail can be synthe-
sized using a simpler method. We distribute secondary textons ac-
cording to a Poisson disk [DW85] distribution with mean inter-
element spacing § (Section 3.1.2).

3.2.3. Background Gradient Field

In this step we synthesize a gradient field, interpolating between
scattered points with associated color values. In this process, we
create a Poisson disk point distribution and assign to each point a
random selection from the color pool extracted in the background
analysis (Section 3.1.4). We found that a Poisson disk spacing of
25 produces good results. From these control points, the full field
is computed using Radial Basis Function (RBF) interpolation with
a linear radius function f(r) =r.

© 2025 The Author(s).
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Algorithm 1 Primary Texton Layer

: G, raster grid used for scoring (see text)

: D, set of all descriptor/texton pairs

. w, vector of weights for each area type

k, number of tries to find the best placement per iteration

: € minimum placement score that can be accepted (€ = 0)

: S, the set of all textons and their descriptors extracted from the
exemplar

7: Select a random texton and corresponding descriptor from S as
T and d respectively, weighted based on area
8: Add T using Algorithm 2

9: while at least one cell contains a texton request in G do
10 P(x) is normalized probability distribution over possible
texton placements

11: /I Try some textons and keep the one with the best score
12: ¢c < Sample P(x) for random centroid pixel
13: bs <— —o0, best placement score so far

14: fori=1,2,...,kdo

15: ¢t + Random texton from D with the category Glcc]

16: // Weighted sum to compute the score of the candidate
texton’s placement

17: Cs Z?:lAiwi

18: if ¢s > bg then

19: /] Track best score (bs) texton (b;) and centroid (b¢)

20: bs < cs, by < ¢t, be + cc

21: end if

22: end for

23: /I If the best score is too low, reject the placement, other-
wise add it

24: if by < € then

25: For all pixels p € bs, G[p] < empty

26: else

27: Add b; at position b using Algorithm 2

28: end if

29: end while

Algorithm 2 Texton Addition Procedure

1: Input: T = the added texton, (a,b) = the location to add it, d =
its descriptor, o. = its category

2: // write placed texton into map
: For all pixels p € T, G[p] < o.

(5]

: // copy descriptor to map wherever map was not yet defined
: for (x,y) = all indices within d do
if Gla+ x,b+ ] is undefined then
Gla+x,b+y] + d[x,y)]
end if
: end for

0 ek
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3.3. Enhancements

Here we describe small enhancements to the base algorithm. All
results in Section 4 use these improvements.

Duplication reduction. We do not want to select the same tex-
tons repeatedly. Initially, each texton in a category has an equal
probability of being selected. Whenever a texton is added to the
output, we halve the probability of selecting that texton, and the
category probability distribution is renormalized.

Background matching. When computing the median color of
a secondary texton, we also compute a color delta against the
background. At synthesis time, we determine the texton’s color by
adding the delta to the background color at the texton centroid. This
small change subtly improves visual quality.

Global density correction. Our method tends to place more tex-
tons than necessary, so we remove some: we delete a randomly se-
lected texton from any category whose fractional area covered by
the category is greater than the exemplar’s fractional area. This re-
peats until the fractional area covered by all textons matches the
coverage of the exemplar.

4. Results and Discussion

This section gives sample results and compares our synthetic tex-
tures to results generated by previous approaches. We also give
examples of texture editing operations enabled by our vector rep-
resentation, and discuss some limitations and failure cases. Addi-
tional results and comparisons appear in the supplemental material.

Our approach is aimed at irregular natural images containing dis-
tinct textons, for which a vector representation of individual tex-
tons is beneficial. Ideally, the exemplars should be statistically sta-
tionary, the common assumption to virtually all example-based tex-
ture synthesis methods; we can somewhat cope with nonstationary
backgrounds, though large-scale structures will not be preserved.
Texton size, shape, and color can be heterogeneous. Many natu-
ral textures possess these properties; a few examples appear in the
figures of this section.

4.1. Qualitative evaluation

Figure 8 shows textures synthesized by our method. Our method
is capable of capturing and reproducing complex relationships be-
tween texture elements.

The top-left texture demonstrates the algorithm’s ability to pro-
duce a convincing result despite somewhat unclear textons. The
top-right texture of the matrix demonstrates our method’s ability to
reproduce uniform textures; however, notice how some of the out-
put textons are slightly perturbed from the grid. The bottom-right
shows that our method is capable of handling complex shapes and
structures between the flowers and blades of grass. The bottom-left
is the ideal exemplar for our algorithm as it has distinct, stochastic
textons; this type of texture is particularly successful.

4.2. Quantitative evaluation

We report metrics comparing our results with those of selected pre-
vious synthesis methods that output textures in raster format: Im-

age Quilting [EF01], PSGAN [BJV17], GCD Loss [ZCXH23], and
Self-Tuning Optimization [KNL*15]. We use the authors’ imple-
mentation whenever possible and use the default parameters. For
Image Quilting, we use a patch size that is half the descriptor size
used by our method. Sample outputs from these methods and ours
are shown in Figure 10.

Like Rodriguez-Pardo et al. [RPCGLM?24], our evalua-
tion uses the metrics SIFID [SDM19], CLIP-IQA [WCL23],
DISTS [DMWS20], PieAPP [PCMSI18], LPIPS [ZIE*18],
SSIM [WBSS04], and BRISQUE [MMB12]. We also estimate the
blur in the output images with Kumar and Raj’s Laplacian-based
metric [KRC16]. We use the implementation of these metrics
provided by the PyIQA Python library [CM22]. We also compare
the pixel intensity histograms between the exemplar and synthetic
texture, reporting the Earth Mover’s Distance between the two.
Overall, these metrics fall into two categories: metrics that mea-
sure similarity and perceptual similarity (LPIPS, PieAPP, SIFID,
SSIM, Earth Mover’s Distance (EMD)), and metrics that measure
image quality (BRISQUE, DISTS, Clip-IQA). Both fidelity to
the exemplar and output image quality are important in texture
synthesis applications.

We report the quantitative metrics in Table 2. Our method is com-
petitive with state-of-the-art methods, with comparable scores in
general and the top SIFID score. We emphasize that our goal here
is not to create another conventional raster-based texture synthesis
method, but to work with vector textures and to be able to represent
and manipulate individual textons while producing results compa-
rable to state-of-the-art methods.

We compare our method to Tu et al. on their sample images,
which are composed of a single layer of elements over a simple
background. Quantitative results are given in the supplemental ma-
terial, and sample outputs appear in Figure 5. From the scores, and
from visual inspection of results, we see that Tu et al.’s method is
better able than our method to capture the target density of textons
on their images. Our method scores highly according to PieAPP
and SSIM and is comparable according to the other metrics. Fig-
ure 5b and c are composed of tightly packed vector elements; our
method was not designed for densely packed and overlapping tex-
tons and it struggles here. Further, these exemplars contain semi-
structured arrangements that our method does not attempt to repli-
cate. Despite this, our method still produces somewhat plausible
results. It is not likely that Tu et al.’s method will work well in our
target domain of natural, stochastic textures with complex struc-
tural relationships, as it assumes a simple distribution of clean tex-
tons with duplicates.

4.3. Ablation Study

We conducted an ablation study to confirm the usefulness of the
different components of our method. We synthesized textures with
various portions of the algorithm disabled: (1) No secondary tex-
tons; (2) Simple scoring prohibiting overlaps; (3) No density cor-
rection; (4) No reselection decay. Other possible variants include
omitting gradient background and secondary texton color adjust-
ment; while these omissions improve the automated scores, they
do so by reducing variety and visual interest. Table 3 contains a

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.
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Figure 5: Our method vs. CVT [TWZ22] on four vector exemplars.

Metric Quilting Tuning PSGAN GCD Ours
SIFID | 0.012 0.074 0.014 18.032  0.011
I.LEMD | 0.000 0.001 0.001 0.001 0.001
DISTS | 0.157 0.219 0.253 0.291 0.347
PieAPP | 1.186 1.466 1.520 1.557 1.258
LPIPS | 0.400 0415 0.428 0475 0451
SSIM 1 0.201 0.219 0.177  0.141 0.198
BRISQUE | 28.089  30.765 20.436  84.497 76.732
CLIP-IQA 1 0.522 0.581 0484 0436 0482
Blur 1 1750 1617 2391 7394 3060

Table 2: Metrics computed for the images in Figure 10; best scores
are bold, second best are italicized. Values are the mean of four re-
sults from each of 38 exemplars; per-image numbers appear in the
supplementary material. The average exemplar BRISQUE score is
27.562 and the average exemplar CLIP-1QA score is 0.521.

summary of the metrics computed over six textures for each condi-
tion. All individual images as well as the full table of metrics can
be found in the supplemental material.

In general, the full algorithm scores better than any reduced vari-
ant. This is confirmed by visual inspection of the results, which
can be found in the supplemental material. Reselection decay has a
more meaningful impact when synthesizing a result larger than the
exemplar.

4.4. Timing and statistics

Table 4 reports the average amount of time required to synthesize
4 500 x 500 textures. Our method requires an average of 6 minutes
for analysis, and approximately 30 seconds for synthesis. Synthe-
sizing a larger 1000 x 1000 image takes about 2 minutes. Table 5
shows texton counts after analyzing 500 x 500 results. Typical nat-
ural textures at this resolution have several hundred primary textons
and 5k-10k secondary and detail textons. More artificial textures
(like row C in Figure 10) may have far fewer. Note that the counts
of detail textons are reasonably consistent owing to the Poisson

© 2025 The Author(s).
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Metric Full 1 2 3 4
SIFID | 0.000 0.000 0.000 0.000 0.000
LEMD| 0.001 0.002 0.001 0.001 0.001
DISTS| 0.348 0.389 0.350 0.351 0.350
PicAPP | 1.190 4.671 1.099 1.131 1.091
LPIPS | 0.469 0.623 0.470 0475 0475
SSIM 1 0.110 0.113 0.110 0.110 0.112

Table 3: Ablation study metrics. Best scores are bold, second best
italics. 1: No secondary textons. 2: Simple scoring prohibiting
overlaps. 3: No density correction. 4: No reselection decay.

Method Analysis Time  Synthesis Time
Image Quilting - 21m
Self-Tuning - 38.5s
PSGAN 7.5h 0.5s
GCD Loss - 2.4m
Ours 6m 28s

Table 4: The average time to synthesize a 500 x 500 exemplar.
More than 60% of our analysis time is due to Segment Anything
(SAM). tImage quilting results are from an unoptimized third-party
implementation, not the authors’ code.

disk placement, although not all placed textons will be visible in
the final image.

4.5. Vector Edits

Results from a few post-processing operations enabled by a vector
representation were shown in Figure 1. Figure 9 shows examples of
some additional editing operations. Vector interpolation allows tex-
tons to seamlessly move and transform into the textons of the des-
tination image. We provide a video of the interpolation in our sup-
plemental material where the full effect is more prominent. Forced
anisotropy orients each texton along a desired global direction. Tex-
ton thinning has applications in both accessibility and level of detail
rendering. Joint synthesis allows a control map to dictate which ex-
emplar to sample from, and supports multiple exemplars. Density
map adjustment removes textons with probability proportional to
the map intensity at that location. Textures can be made interactive

Exemplar Primary Detail Secondary
A 1376 14368 9328
B 386 9688 5852
C 8 -
D 531 6132 9959
E 577 9199 8239
F 445 10036 7627

Table 5: The number of primary and secondary textons in selected
results, plus the total number of detail textons across all primary
textons. Exemplar ID refers to the exemplars shown in Figure 10.
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Figure 6: Effect of domain warps. Left: original texture; middle:
warped raster; right: adaptive density.

since the locations, geometry, and color of each texton can be eas-
ily modified. For example, a texture of leaves on a sidewalk could
have the leaves move and react to a player’s footsteps. Texton tint-
ing could be used for dynamic recoloring, especially when simply
tinting the full image will not suffice (e.g. certain textons need to
be tinted different colors).

Additionally, we can adapt the density of textons if the synthe-
sis domain is modified. We show an example of this capability in
Figure 6, where the exterior of the synthesized patch is warped in
such a way that increases its area (for example, a balloon inflating).
In a raster, this sort of translation would also warp the textons in-
cidentally. In vector format, the textons can be repositioned based
on mean value coordinates [Flo03], their descriptors can be placed,
and our texture synthesis algorithm can be run from there, creating
a plausible distribution. This is different from texture inpainting
because the area to fill is not clearly defined.

4.6. Limitations

Our method is intended for a limited class of textures: those with
separate, identifiable textons, which most benefit from a vector rep-
resentation. When individual textons are difficult to distinguish, our
method is less effective. Cases where textons overlap or are tightly
packed also pose problems: in such cases, texton shape and place-
ment are tightly constrained by nearby textons, whereas we assume
more flexible arrangements to be possible. Fine-tuning the scoring
weights can improve outcomes on packed textures.

We depend on image segmentation to identify vector elements,
but segmentation is not always reliable. Textures without distinct
elements will not yield segments and the subsequent synthesis will
fail. Shadows may produce separate segments, and subsequently
in synthesis can become detached from any possible source of
shadow, with unappealing results.

Figure 7 shows the result of our method when used on some of
these cases. Regular textures sometimes work, but there is some
uncertainty about whether the pattern will be preserved, partly de-
pending on how much unstructured content is also present. Notice
how the example regular texture has more textons than just the cir-
cles, in contrast to the circles image in Figure 8 (top right) that has
no background detail. The problems in the other examples can be
attributed to the segmentation: when textons are very small, they
may be missed by the segmentation with the subsequent analysis
yielding a picture of a much sparser texture. In a texture with no
discrete textons, the segmentation still identifies some features; al-

Figure 7: A few failure cases. Left: Regular texture; center: no dis-
crete textons; right: limited context.

though these can be used to create an appealing texture, the output
typically does not resemble the exemplar. Textures with few tex-
tons relative to the exemplar size often fail due to limited neighbor-
hood context. Since a large neighborhood is required, only a few
segments are accepted as primary textons creating a sparse texture.
Sometimes fine-tuning the weights can save these cases.

5. Conclusion

In this paper, we introduced an algorithm for synthesizing vec-
tor textures composed of solid-colored polygons and a background
gradient field. We start with an input raster exemplar, and convert
it to a vector representation through image segmentation. This rep-
resentation is then used to synthesize a novel vector texture. We
also showcase some post-processing operations on our vector re-
sults that would be difficult to apply to a raster image, illustrating
potential applications of vector textures.

We compare the results of our method with a number of other
state-of-the-art algorithms in qualitative and quantitative evalua-
tions. Our method is competitive with the other algorithms while
our textures are purely composed of vector elements. We also com-
pared our method with a vector texture synthesis algorithm de-
signed for structured textures; despite the different types of textures
the methods were designed for, our results are comparable.

There remain some opportunities for future work. Our textons
are solid-colored (sub-texton detail is provided by a hierarchy of
textons) and using gradients to enhance detail is a clear next step.
Exploring alternatives to pure segmentation for texton extraction
could yield improvements; manual intervention or texton repair
could be investigated. Finally, reconstructing data other than color
(e.g., normals) could be beneficial to some applications.
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Figure 8: Textures synthesized using our algorithm. Each texture pair shows a raster exemplar (left) and a synthetic vector image (right,
rendered at 1000 x 1000).
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Figure 9: Some editing operations that are easy to perform given vector textons, but would be more difficult on a raster image. Additional
editing operations are shown in Figure 1.
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Exemplar ~ Self-Tuning

Figure 10: A comparison of our method to Image Quilting [EF01], Self-Tuning Optimization [KNL*15], PSGAN [BJV17], and GCD
Loss [ZCXH23]. Default parameters were used.
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